Effect Mechanism of Raphani Semen on Gastrointestinal Mobility Based on Network Pharmacology Approach Click Copy

Effect Mechanism of Raphani Semen on Gastrointestinal Mobility Based on Network Pharmacology Approach

References:

[1] 国家药典委员会.中华人民共和国药典:一部[M].北京:中国医药科技出版社,2015:272.

[2] 唐健元,张磊,彭成,等.莱菔子行气消食的机制研究[J].中国中西医结合消化杂志,2003,11(5):287-289.

[3] 张雨,李恒,李克宁,等.复方中药网络药理学的研究进展[J].中成药, 2018,40(7):1584-1588.

[4] K?/span>HLER S, CARMODY L, VASILEVSKY N, et al. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources[J]. Nucleic Acids Research,2019,47(D1):D1018-D1027.

[5] STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards suite:from gene data mining to disease genome sequence analyses[J]. Current Protocols in Bioinformatics,2016,54(1):1.30.1-1.30.33.

[6] LI Q, ZHAO K, BUSTAMANTE C D, et al. Xrare:a machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis[J]. Genetics in Medicine,2019,21:2126-2134.

[7] LIU Y, LIANG Y, WISHART D. PolySearch2:a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more[J]. Nucleic Acids Research,2015,43(W1):W535-W542.

[8] MANDLOI S, CHAKRABARTI S. PALM-IST:pathway assembly from literature mining - an information search tool[J]. Scientific Reports,2015,5:10021.

[9] UP Consortium. UniProt:the universal protein knowledgebase[J]. Nucleic Acids Research,2017,45(D1):D158-D169.

[10] DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction:updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Research,2019,47(W1):W357- W364.

[11] SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017:quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Research, 2017,45(D1):D362-D368.

[12] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Research,2003,13(11):2498-2504.

[13] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist- oriented resource for the analysis of systems-level datasets[J]. Nature Communications,2019,10(1):1523.

[14] SHAM T T, YUEN A C Y, NG Y F, et al. A review of the phytochemistry and pharmacological activities of Raphani Semen[J]. Evidence- Based Complementary and Alternative Medicine,2013,2013:636194.

[15] JUNG Y W, LEE J-S, ZHAO B T, et al. Quantitative and pattern recognition analyses of five marker compounds in Raphani Semen using high-performance liquid chromatography:analyses of compounds in Raphani Semen by HPLC[J]. Bulletin of the Korean Chemical Society,2015,36(9):2307-2319.

[16] 中国科学院上海有机化学研究所.上海有机所化学专业数据库.植物化学成分数据库[DB/OL].[2019-10-31].http://www.organchem.csdb. cn/scdb/main/plant_introduce.asp.

[17] WARD S M. Interstitial cells of Cajal in enteric neurotransmission[J]. Gut,2000,47(Suppl 4):40-43.

[18] 尹晓岚,唐旭东,王凤云,等.功能性消化不良平滑肌舒缩障碍中G蛋白偶联信号转导机制的研究进展[J].世界华人消化杂志,2016,24(6):886-893.

[19] MCLEAN P G, BORMAN R A, LEE K. 5-HT in the enteric nervous system:gut function and neuropharmacology[J]. Trends in Neurosciences,2007,30(1):9-13.

[20] VIANNA C R, DONATO J, ROSSI J, et al. Cannabinoid receptor 1 in the vagus nerve is dispensable for body weight homeostasis but required for normal gastrointestinal motility[J]. Journal of Neuroscience,2012,32(30):10331-10337.

[21] AUTERI M, ZIZZO M G, SERIO R. GABA and GABA receptors in the gastrointestinal tract:from motility to inflammation[J]. Pharmacological Research,2015,93:11-21.

[22] BARTHó L, HOLZER P. Search for a physiological role of substance P in gastrointestinal motility [J]. Neuroscience,1985, 16(1):1-32.

[23] GLAVIN G B, SZABO S. Dopamine in gastrointestinal disease[J]. Digestive Diseases and Sciences,1990,35(9):1153-1161.

[24] TANAKA Y, HORINOUCHI T, KOIKE K. New insights into β- adrenoceptors in smooth muscle:distribution of receptor subtypes and molecular mechanisms triggering muscle relaxation:β- adrenoceptors and smooth muscle relaxation[J]. Clinical and Experimental Pharmacology and Physiology,2005,32(7):503-514.

[25] 葛亚如,郭炜,董文亮,等.莱菔子降压机制研究与临床应用进展[J].中国中医药现代远程教育,2015,13(12):152-153.

[26] 杨雯晴.藤菔降压片治疗高血压病肝阳上亢证的临床基础及实验研究[D].济南:山东中医药大学,2014.

[27] HUANG H, WANG H, FIGUEIREDO-PEREIRA M E. Regulating the ubiquitin/proteasome pathway via cAMP-signaling:neuroprotective potential[J]. Cell Biochemistry and Biophysics,2013,67(1):55- 66.

[28] 孟鑫雨,王金库,刘旭,等.莱菔硫烷神经保护作用研究进展[J].中医药信息,2016,33(2):108-111.

[29] 徐华民,徐萌.莱菔子有效成分用于制备治疗脑萎缩的药品:CN102068424A[P].2011-05-05.

[30] DEMA A, PERETS E, SCHULZ M S, et al. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling[J]. Cellular Signalling,2015,27(12):2474-2487.

[31] 胡延雷,张小林,高艳.抗癌物质莱菔子素的最新研究进展[J].化工中间体,2006(9):7-9.

[32] 谭鹏,薛玲,吕文海,等.莱菔子不同炮制品对呼吸系统作用的实验研究[J].山东中医杂志,2005,24(5):300-302.

[33] 王婧,王敏,范玉敏,等.TLR-MyD88通路在COPD炎症反应中的作用及莱菔硫烷的抗感染效果[J].中国老年学杂志,2018,38(9):2184-2187.

[34] 王应灯,孙耕耘.G蛋白偶联受体激酶活性调控与细胞炎性损伤[J].中国药理学通报,2003,19(8):855-858.

[35] BOGDAN C. Nitric oxide and the immune response[J]. Nature Immunology,2001,2(10):907-916.

[36] 郑国华,王义珍.莱菔子散治疗支气管哮喘[J].陕西中医,2002, 23(3):270.

[37] 曹彦.王益谦运用莱菔子治疗小儿咳喘经验介绍[J].新中医,2003, 35(3):11.

[38] 肖荃月,于河,刘曜纶,等.谷晓红运用银莱汤加减治疗小儿发热[J].吉林中医药,2015,35(3):232-234.

[39] 吕国凯,于河,谷晓红.银莱汤加减治疗小儿肺胃积热型感冒40例病例系列研究[J].浙江中医药大学学报,2014,38(8):973-975.

Memo

基金项目:国家自然科学基金(81973724);北京市科技专项(Z181100006218083)